

BEFESA

Validation of results 2024

EMAS Registration No.: ES-CYL-000034

Ctra. de Cabezón s/n, 47011 Valladolid, Spain. www.befesa.com

T. +34 983 250600

F. +34 983 630105

1. Description of the organisation and the environmental management system.

- 1.1. Description of Befesa as a group.
- 1.2. Description of the organisation and its activities, products and services.
- 1.3. Waste received.
- 1.4. Description of the integrated management system.

2. Integrated management policy and organisational structure.

3. Environmental aspects.

- 3.1. Assessment methodology.
- 3.2. Significant aspects.

4. Programme of objectives and targets.

- 4.1. Summary of objectives and targets for 2023-2024.
- 4.2. Summary of objectives and targets for 2025.

5. Befesa's environmental performance.

- 5.1. Emissions into the atmosphere.
- 5.2. Noise.
- 5.3. Water.
- 5.4. Waste production.

6. Basic environmental indicators.

- 6.1. Water consumption.
- 6.2. Energy consumption.
- 6.3. Nitrogen consumption.
- 6.4. Sulphuric acid consumption.
- 6.5. Additive consumption.
- 6.6. Biodiversity.

7. Compliance with legal requirements.

- 8. Communication and participation in the field of the environment.
- 9. Other relevant activities in the environmental field.
- 10. Next environmental statement.

1. Description of the organisation and the integrated management system

1.1. Description of Befesa as a group.

Befesa is a service company specialising in the recycling of steel dust, salt slag and aluminium waste, as well as logistics and other related industrial services. It offers environmental services specialising in the comprehensive management of industrial waste from the steel and aluminium industries. Its activity is divided into two business units: Steel Dust Recycling Services and Aluminium Salt Slag Recycling Services.

Servicios de reciclaje de polvo de acería

Servicios de reciclaje de escorias salinas de aluminio

Befesa Aluminium Work Centre (CT) Valladolid, part of the Aluminium Salt Slag Recycling Business Unit, offers waste recycling services for the primary and secondary aluminium industry.

ALUMINIUM SALT SLAG RECYCLING SERVICES Salt slag and SPL Secondary aluminium Technology and recycling services recycling services machinery Befesa Aluminium Befesa Aluminium (Valladolid Plant) (Erandio Plant) Befesa Aluminium Befesa Salzschlacke (Barcelona Plant) (Hannover Plant) Befesa Aluminium Befesa Salzschacke Germany (Lünen Plant) (Bernb urg Plant)

This report will analyse all the environmental information relating to CT Valladolid.

1.2. Description of the organisation and its activities, products and services.

Our work centre, Befesa Aluminio CT Valladolid (CNAE-38.32), is dedicated to the "Recycling, recovery and valorisation of waste from primary and secondary aluminium production."

From the reception of industrial waste, through storage and subsequent treatment, we are constantly mindful of minimising the possible environmental effects or impacts that our process could generate.

The work centre is located in the municipality of Valladolid occupying an area of approximately 136,257 m².

Befesa Aluminio CT Valladolid's recycling and recovery processes have been considered best available technologies (BAT) in the European Commission's BREF (Best Available Techniques Reference) documents on non-ferrous metallurgy.

Befesa Aluminio CT Valladolid's activities are divided into four processes, which are described below:

Process 1: Obtaining aluminium concentrates through physicochemical treatment.

The recycling process operated by Befesa Aluminio CT Valladolid allows the recovery of free metal and fluxing salts and the formation of inert products, mainly composed of aluminium oxide.

The process consists of mechanical crushing and metal separation, the reaction of hazardous components and aqueous dissolution of salts, filtration of the inerted material and subsequent crystallisation of the salts.

Specifically, the phases would be:

Grinding: The purpose of this treatment is, on the one hand, to extract the metallic aluminium and, on the other, to reduce the size of the particles for a perfect reaction of the reactive components and the dissolution of the salts contained.

It consists of breaking up large blocks and, once the material has been crushed, screening it to obtain the first product of the recycling process, which is aluminium concentrate. The rest is reduced to powder and sent to the next stage.

<u>Dissolution-Reaction:</u> The material (powder) obtained in the previous stage is mixed with water to dissolve the salts.

The mixture is reacted in order to eliminate the hazardous nature of the waste. The gases produced in the dissolution process are incinerated in the flare.

After the reaction process, the decanted sludge goes on to the next stage (filtration) and the brine is sent to the crystallisation process, defined below.

<u>Filtration-Drying:</u> The sludge obtained is washed and filtered, then sent to the storage area storage area, where it undergoes a multi-stage drying process until it is shipped.

Once the final product is complete, it is called Paval, with multiple industrial applications such as: cement manufacturing, refractory brick industry, rock wool manufacturing, etc.

<u>Crystallisation:</u> the brine undergoes a process of evaporation and subsequent condensation, obtaining salt (a mixture of NaCl and KCl) and water, which is reused in the process.

Gas scrubbing: The ammonia from the previous stages is fed into gas scrubbers where, through scrubbing with sulphuric acid, ammonium sulphate is produced used by the fertiliser, rock wool and board industries.

Table 1: Summary of products obtained and applications

	SUMMARY OF PRODUCTS OBTAINED AND APPLICATIONS				
Paval	 Manufacture of cement clinker. Manufacture of ceramic and refractory products. Manufacture of thermal and acoustic insulation. Manufacture of products for blast furnace deoxidation (steel industry). 				
Ammonium sulphate	 Fertiliser industry Thermal and acoustic insulation industry Timber industry 				
Salt	 De-icing salt in secondary aluminium smelters. Winter road maintenance 				
Aluminium	Secondary aluminium smelters				

Process 2: Grinding and segregation of aluminium slag.

The slag from aluminium smelting furnaces undergoes a grinding and screening process in order to separate the metallic aluminium (aluminium concentrates) from the oxides, which are treated in process 1.

During 2024, this facility has been used on an ad hoc basis.

Process 3: Grinding and segregation of aluminium scrap.

The purpose of this treatment is to separate the metallic aluminium contained in aluminium scrap.

Facility no longer in use.

Process 4: Storage of waste that is not subject to treatment. Befesa Aluminium

Valladolid Work Centre is authorised to receive and store authorised waste prior to treatment in closed warehouses.

1.3. Waste received:

In general, all data reported in this report will be provided in absolute values and referenced to tonnes of waste processed (considering waste processed from the moment it enters the grinding process).

Befesa Aluminio CT Valladolid's activity is the recycling of the waste received, therefore all environmental indicators will be referenced by tonnes of waste processed.

The amount of waste treated in tonnes over the last four years is as follows:

Table 2: Summary of waste treated (t) / year

Material treated (t)	ELW code	2021	2022	2023	2024
Salt slag (P1)	100,308	133,505	142,209	123,668	136,357
SPL (P1)	161,101/161,103	11,103	15,747	10,412	11,416
Aluminium slag powder (P1)	100,321	0	0	0	0
Filter dust (P1)	100,319	0	0	0	0
Foundry sand (P1)	101,106	0	0	0	0
Aluminium scrap (P4)	120,103 160,118 191,203	128	506	0	0
Aluminium slag (P2)	100,304	65	0	0	0
Totals		144,801	158,462	134,080	147,773

The list of products obtained in tonnes over the last three years is as follows:

Table 3: Products obtained (t)

Product obtained (t and %*)	2021	2022	2023	2024
Salt	41,989 (29%)	43,347 (27%)	40,626 (33%)	47,166 (24%)
Paval	113,048 (78%)	117,756 (74%)	117,876 (88%)	128,234 (67%)
Aluminium concentrate	11,993 (8%)	13,311 (8%)	11,479 (9.28%)	10,114 (5%)
Ammonium sulphate	10,661 (7%)	12,113 (8%)	12,811 (9.5%)	14,141 (7%)
Totals	177,691	186,527	182,793	199,657

^{*}Comparison with the total material treated in the corresponding year.

1.4. Description of the integrated management system.

Befesa Aluminio CT Valladolid has an Integrated Environmental Management System (SIGMA), certified by Bureau Veritas in accordance with the requirements of the UNE-EN ISO 14001:2015 standard and European Regulation No. 1221/2009 (EMAS), updated by Regulation (EU) 2017/1505 and Regulation (EU) 2018/2026, which is the tool used to implement and put into practice the Environmental Policy, enabling it to manage environmental aspects internally and define its environmental objectives.

The SIGMA documentation provides an overview of the organisation, functions and responsibilities within Befesa Aluminium CT Valladolid. There is a Management Manual that describes the interrelationships between the elements of SIGMA, documents key functions and responsibilities, and provides guidance on reference documentation. This manual provides an overview of management and describes the basic requirements of the system. These requirements are developed through procedures, instructions and specifications for all activities that require them.

The company's management defines an integrated policy for Befesa División Escorias Salinas based on health and safety, quality, the environment and energy efficiency, which formally describes the guidelines and commitments adopted by Befesa.

^{**}The total sum of percentages is greater than 100% due to moisture and the generation of new materials (hydrated oxides, etc.).

This policy is reviewed periodically based on changes in the organisation, legislation, stakeholders, etc.

The policy was last reviewed and amended in August 2024.

P-IMS - Befesa Escorias Salinas Division Integrated Policy

As a leader in the recycling and reuse of primary and secondary aluminium, Befesa Escorias Salinas, with its recycling plants in Valladolid (Spain), Lünen and Hanover (Germany), is at the heart of its activity, contributing to sustainable development through safe, efficient and effective management.

The management of Befesa Escorias Salinas is aware that the key factor for the success of its activity is the satisfaction of all stakeholders (customers, direct and indirect employees, subcontractors, authorities and legislators, social environment, etc.), and therefore agrees to implement the following policy, which establishes the following commitments:

1. Commitment to health and safety, accident prevention and the improvement of working conditions: Befesa Escorias Salinas protects the occupational health and safety of all employees (direct and indirect) by complying with legal requirements and other occupational health and safety requirements and implements improvements to eliminate unsafe behaviours and conditions and remove risks. To this end, the company applies a zero-accident policy in which employee participation is an essential element in preventing occupational risks and promoting safety. Befesa has implemented a framework for integrating the occupational health and safety management system that complies with the requirements of ISO 45001:2023.

2. Commitment to an appropriate working environment, equal treatment in the workplace, skills development and work-life balance:

Befesa Escorias Salinas supports equality in the workplace and training to improve the skills of its employees. It fosters a climate of trust by complying with regulations, analysing the needs and expectations of employees, and establishing standard rules in labour relations based on integrity, responsibility, and loyalty. Befesa has an internal procedure for managing absenteeism to eliminate its causes and guarantee the right to active work for all employees.

- 3. Commitment to product and service quality: Befesa Escorias Salinas is committed to providing its customers with products and services that meet the requirements legal and regulatory requirements, as well as customer-specific quality standards. Befesa Escorias Salinas works towards continuous improvement in line with the company's strategic objectives and taking into account the context of the organisation and the needs and expectations of customers, assessing risks and taking measures to eliminate or mitigate these risks. To this end, Befesa has implemented a quality management system in accordance with the ISO 9001:2015 standard.
- **4. Commitment to environmental protection:** Befesa Escorias Salinas is committed to preventing pollution and protecting the environment in accordance with the applicable legal requirements and other commitments that Befesa may undertake, depending on the context of the organisation and taking into account its activities, products and services throughout their life cycle. To this end, the company maintains a system for identifying, assessing and reducing environmental impacts that promotes the rational use of natural resources, waste reduction, the circular economy and continuous improvement. This includes Befesa's commitment to mitigating climate change by improving energy efficiency and the greenhouse gas footprint of products and services, moving towards the transition to a sustainable economy. To this end, Befesa has implemented an environmental management system in accordance with the ISO 14001:2015 standard.
- **5. Commitment to energy efficiency and energy management:** Befesa Escorias Salinas recognises the importance of efficient energy management and strives to achieve maximum efficiency. To this end, Befesa maintains an energy efficiency management system that guarantees continuous improvement in energy performance, including energy efficiency, energy use and consumption, sets continuous improvement targets, ensures the availability of the information and resources necessary to achieve them, integrates energy performance into strategic decisions and complies with legal and other energy and efficiency requirements. In addition, Befesa Escorias Salinas applies the Best Available Technology and promotes the acquisition of energy-efficient products and services. This behaviour is confirmed by the ISO 50001:2018 certification.

6. Confidentiality commitment regarding confidential information and the protection and proper processing of personal data: Befesa Escorias Salinas treats
information confidentially as a matter of principle, supports the security of legally protected data
and the proper use of information technologies in compliance with the long-standing guidelines
established by the Befesa Group, promoting the rationalisation, optimisation and simplification
of data processing and continuously improving the effectiveness and efficiency of IT systems.

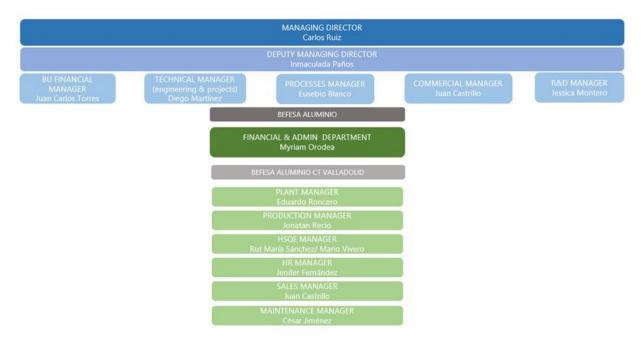
7. Legal obligation, risk reduction and continuous improvement: Befesa Escorias Salinas is undertakes to comply with the legal obligation and other obligations to identify, assess and eliminate or reduce identified risks, avoid unwanted impacts, ensure continuous improvement and transparency, take into account the needs and expectations of relevant stakeholders, and consider the context and characteristics of the organisation when developing its strategy.

The management of Befesa División Escorias Salinas guarantees the maintenance and application of this policy and that it is understood and accepted by all interested parties.

This policy is available to all interested parties upon request. This policy is distributed to all employees and explained directly.

Carlos Ruiz de Veye, Managing

Director, Salt Slag Recycling Division


Valladolid/Hanover/Lünen, August 2024.

2. Organisational structure

In order to carry out activities related to the Integrated Environmental Management System, the Valladolid work centre has the necessary human resources, as defined in the organisation's organisational chart:

Table 4: Organisational chart

3. Environmental aspects.

3.1. Assessment methodology:

Befesa determines all direct and indirect environmental aspects that have a positive or negative impact on the environment, as well as which of these aspects are significant based on the established criteria.

Therefore, in identifying environmental aspects, direct and indirect aspects of activities, products and services have been taken into account, considering the DNSH Principle and European Taxonomy, the different stages of the life cycle, including the contracting of treatment services, reception, production, transport and use of the products obtained.

<u>Direct environmental aspects</u> are associated with Befesa's activities, products and services over which the company exercises direct management control.

These aspects include:

- Atmospheric emissions
- · Discharges into water, including seepage into groundwater
- Generation, recycling, reuse, transport and disposal of hazardous and nonhazardous waste
- Land use and contamination
- Energy use
- Use of additives and auxiliaries
- Local issues (noise, vibrations, odours, dust, visual appearance)

<u>Indirect environmental aspects</u> are the result of interaction between the company and third parties and over which it can exert a reasonable degree of influence. These aspects include:

- Life cycle aspects that the organisation can influence
- Investments
- New markets
- Environmental behaviour and practices of contractors and suppliers

In assessing the significance of aspects, the following shall be taken into account:

- Relevant applicable legislation and internal requirements.
- Damage or benefits to the environment, including biodiversity
- Damage or benefits to the company.
- The state of the environment
- Severity, frequency and reversibility of the aspect or impact
- Interest/complaints from interested parties

Based on these criteria, when assessing the significance of aspects, scores are assigned to determine which ones are significant. To do this, the following is taken into account:

- Existing data on material and energy consumption, discharges, waste and emissions in terms of risks
- Activities regulated by environmental legislation
- · Procurement activities
- Activities with the most significant environmental costs and benefits.

In addition, normal operating conditions, start-up and shutdown conditions (abnormal) and reasonably foreseeable past, present and future emergency conditions are taken into account, as well as investigations into previous incidents or accidents.

3.2. Significant environmental aspects.

Befesa takes into account the direct and indirect environmental aspects of its activities, products and services, including those arising from new projects, emergency situations or abnormal operating conditions, which may have an impact on the surrounding environment.

Furthermore, in accordance with the provisions of the new ISO 14001:2015 standard, European Regulation 2017/1505 amending Annexes I, II and III of European Regulation No. 1221/2009 (EMAS), and Regulation (EU) 2018/2026 amending Annex IV to Regulation (EC) No 1221/2009, the changes that may occur in the environment from a life cycle perspective (environmental impacts) are determined for each of the identified aspects.

Environmental statement 2024

Befesa considers its significant environmental aspects when planning its Integrated Environmental Management System and defining its environmental objectives and targets:

Positive direct and indirect environmental aspects that are considered significant under normal conditions: Assessment of aspects 2024

Table 5: Positive environmental aspects

Process	Activity	Significant environmental aspects significant	Environmental impact	Observations
Strategic management	Contracting of treatment services	Disposal of RTPs	Water/soil contamination	Befesa CT Valladolid's activity consists of providing sustainable solutions to the primary and secondary aluminium industry through the service and recycling of the hazardous waste generated.
Strategic management	Recycled product generation: paval	Consumption of raw materials	Resource depletion	
Strategic management	Recycled product generation: salt	Consumption of raw materials	Resource depletion	Befesa CT Valladolid closes the circle of natural resource protection by collecting hazardous industrial waste, recycling it and subsequently reintroducing valuable materials into the production process (salt, slag, aluminium and ammonium sulphate).
Strategic management	Recycled product generation: aluminium	Consumption of raw materials	Resource depletion	Befesa has been part of the circular economy for more than three decades.
Strategic management	Recycled product generation: ammonium sulphate	Consumption of raw materials	Depletion of resources	
Financial	Contracting environmental liability insurance and extended liability bonds	Company environmental liability	Soil/water/atmosphere pollution	Befesa CT Valladolid has environmental liability insurance that covers the liabilities arising from its activity.
Commercial- sales	New markets, new products and new applications	Consumption of raw materials	Depletion of resources	Befesa CT Valladolid's activity consists of providing sustainable solutions to different industries by marketing high added-value products derived from a recycling process, thereby avoiding the consumption of raw materials.

Direct negative environmental aspects considered significant under normal conditions: Environmental aspects assessment 2024

Table 6: Negative environmental aspects

Process	Plant area/area	Activity	Significant environmental aspects Significant	Environmental impact	Actions	Code
Production (RTD)	Plant	Phase II: dissolution/reaction/decanting; Phase III: filtration/transport/product storage, Phase IV: crystallisation, Phase VI: gas scrubbing, Loading into product transport vehicle 3: salt, Raw material and process control (lab), Offices 2 (with changing rooms), Pilot plant development, Workshops, Scheduled shutdowns, Projects: execution of works	Water consumption	Resource depletion (drought), greenhouse gas (GHG) emissions	Reuse of process water and rainwater 2025 target	RTD-EA-2024-OBJ-1
Production (RTD)	Crystallisation	Phase IV: crystallisation	Electricity consumption	Resource depletion, greenhouse gas (GHG) emissions	ISO 50001 certification and establishment of energy efficiency measures 2025 target	RTD-EA-2024-OBJ-2

4. Programme of objectives and targets.

Objectives and targets are set annually based on the identification and assessment of environmental aspects and impacts.

The progress of the proposed actions and the degree of compliance with the established objectives are reviewed on a monthly basis.

4.1. Summary of objectives and targets for 2023-2024.

For the 2023/2024 financial year, the following objectives were established to reduce significant environmental aspects, the results of which could be quantified during 2024:

• Environmental aspect: water consumption

Table 7: Objective 1: Water consumption

Reduce the environmental impact of the process through better management of condensate water consumption in the process to reduce annual raw water consumption. Internal code RTD-2024-2023-RO-OBJ-4		Associate d indicator: m³ / tonne processed	Annual target value: 2% reduction in water consumption compared to 2023 Baseline value: 1.13 m³/t processed
Goals	Responsible	Deadline	Resources
M1 Carry out the work to adapt the area so that this water can be collected separately and reused at the same point.	Production	December 2024	NA

Technical and operational measures have been implemented to ensure more responsible consumption at the plant, as well as better use when moving water between the , reducing consumption to 1.05 m³/t of waste processed waste.

Water consumption reduced by **9.5**%.

Objective achieved.

Environmental aspect: electricity consumption

Table 8: Objective 1: Electricity consumption

Reduction of compressed air consumption in the plant by a processed compared to 2023 Internal code: EE-2024-RO-OBJ-1	pared to 2023		Base value: 6.39 kW/ Processed
Goals	Responsible	Deadline	Resources
M1 Leak analysis M2 Reduction of bag filter blowing times.	Energy efficiency	December 2024	€1,350

A comprehensive study of potential compressed air leaks in the facility was carried out, resulting in **8,561 kWh/year** of energy loss. These leaks were repaired throughout the year.

5.62 kW/tonne of compressed air processed was consumed, representing a **13.7%** reduction in compressed air consumption.

Objective achieved.

Table 9: Objective 2 Electricity Consumption

Reduction in natural gas consumption by 2% per tonne processed compared to 2023 Internal code: EE-2024-RO-OBJ-2		Associated indicator: kWh/tonne processed	Base value: 412.09 kW/tonne processed
Goals	ls Responsible		Resources
M1 Use of plant gases to produce steam, replacing natural gas. M2 Control and monitoring of gas consumption Natural gas crystallisation per tonne processed	Energy efficiency	December 2024	NA

The gas generated during the process is analysed, and its composition and flow rate are evaluated for subsequent energy use.

Thanks to this study and analysis, the consumption of natural gas used in the crystallisation plant has been optimised.

Natural gas consumption has been reduced to **376.76 kW/tonne processed**, representing a **9.37%** decrease **in natural gas** consumption compared to the previous year.

In addition, there has been an improvement in the maintenance of kilns and operations at the crystallisation plant.

Objective achieved.

Table 10: Objective 1 Gas Consumption

2% reduction in electricity consumption compared to 2023 Internal code EE-2024-2023-SP-2		Associated indicator: kWh/tonn e processed	Base value: Electricity consumption excluding electricity from contractors (kWh/tonne processed) 106.94 kW/tonne processed.
Goals	Responsible	Deadline	Means
M1 Change in lighting management at the plant M2 Modification of street lighting. Sections by circuits M3 Modification of lighting in offices and common rooms	Energy Efficiency	December 2024	NA

Work was carried out on the plant's operations, reducing consumption from 14,338,970 kWh in 2024 to 13,999,065 kWh in 2024, representing a 2.42% reduction in electricity consumption. This meant a decrease from 106.94 kW/tonne processed to 94.73 kW/tonne processed, representing a 12.88% reduction in electrical energy per tonne of salt slag processed.

Work began on modifying the lighting in the warehouses in 2024 and continued in 2025.

Objective achieved.

• Environmental aspect: generation of non-hazardous waste

Table 11: Objective 1: Waste

10% reduction in MSW (Municipal Solid Waste) compared to 2023 Internal code: HSQE-2024-2023-RO-OBJ-3		Associated indicator: Tonnes sent to MSW	Base value: 13.28 t/year
Goals	Responsible	Deadline	Resources
M1Implementation of waste segregation points in Offices 1 and 2 + Lab + canteens. M2Reduction in managed and sent MSW. M3 Collective waste reduction campaigns: Earth Day, Recycling Day, Environment Day, Eco Week, etc.	Quality, Environment and Prevention	December 2024	NA

13.32 tonnes of solid urban waste were generated. Measures were implemented, such as a paper recycling system in offices, agreements were signed with specialist electronic waste management companies, and signage relating to waste and its types was reinforced. Despite all these measures, the amount of solid urban waste generated in the workplace increased by **0.3**%.

Target NOT achieved, to be reconsidered in 2025

Environmental aspect: improvement of carbon footprint

Table 12: Objective 1: Improvement of carbon footprint

recovery Internal	y and use of residual hydrogen flow Construction of th y and separation of the hydrogen flow code: IDi-2024-2023-RO-OBJ-4, also from IDi-2024-20 4-RO-OBJ-2	•	Associate d indicator:	Grant/cost ratio (%) 60% Signing of grant agreement 1
Goals		Responsible	Deadline	Resources
Goal 1	Seeking opportunities and funding Goal 2 Negotiation of agreements Development of the Hydrogas proposal	IDI	December 2024	NA

Funding covering **60%** of the total project cost was secured thanks to funding from the Life programme in the Climate Change and Climate Action category, and the entire the Hydrogas project proposal was developed, working on the different work packages.

Objective achieved

Table 13: Objective 2: Improvement of the Carbon Footprint

Generate knowledge on the use of H2 as an alternative to natural gas Development of the Hylnheat project focused on validating and analysing the impact of replacing natural gas with hydrogen in salt slag melting and recycling processes (horizon 3) Internal code: IDi-2024-2023-RO-OBJ-2		Associated indicator: Achievement of the two project milestones project	2/2	
Goals		Responsible	Deadline	Resources
Goal 1	Construction of the fusion facility Goal 2 Commissioning and start-up of equipment	IDI	December 2024	NA

The tasks within the scope of the project are being carried out in accordance with the schedule agreed upon with the grant.

The construction of the demonstration plant is completed within the established deadlines and the natural gas facility is commissioned, with the first tests being carried out.

Objective achieved

4.2. Summary of objectives and goals for 2025.

Once the results for the 2024 financial year have been reviewed and analysed, taking into account significant environmental aspects and analysing the risks and opportunities of the business unit, the following objectives for 2025 are formulated.

• Environmental aspect: generation of non-hazardous waste

Table 14: Objective 1: Waste

of those	on of municipal solid waste generated, improving the se fractions that are recoverable or recyclable. Internal code 24/2023-RO-OBJ-6	Associated indicator: Tonnes sent to MSW	Value Annual target: Reduction >13.32 t	
Goals		Responsible	Deadline	Resources
Target 1 Goal 2	Environment Campaign Food Aluminium Segregation Goal 3 Food packaging paper segregation	Quality, Environment and Prevention	December 2025	NA

• Environmental aspect: new markets

Table 15: Objective 1: New Markets

for amn	ng the environmental product declaration for paval and the nonium sulphate code: HSQE-2025/2024-RO-OBJ-1, HSQE-2025/2024-RO- 24-SP-OBJ-1, COM-2025-SP-OBJ-2, EE-2025-2024-2023-SP	Associated indicator: External certification	Value Annual objective: Obtaining certification and compliance of the plan	
Goals		Responsible	Deadline	Resources
Goal 1 Goal 2	CHC registration for SAM DAP ACV carbon registration for Paval	Quality, Environment and Prevention	December 2025	NA

• Environmental aspect: energy consumption

Table 16: Objective 1: Energy consumption

Improve internal knowledge of the plant's energy performance in order to take more effective and efficient improvement measures Internal code EE-2025-SP-OBJ-1, ENG-2025-RO-OBJ-1, ENG-2025-SP-OBJ-2, RTD-EA-2024-OBJ2	Associated indicator: kWh/tonn e processed	Annual KPI 1 KPI 2 KPI 3 KPI 4 KPI 5 KPI 6 Base vi KPI 1 KPI 2 KPI 3 KPI 4 KPI 5 KPI 6	Kw/t crysta Kw/t comp Kw/t gas tr Kw/t gas p alue: Kw/t grindi Kw/t dissol Kw/t crysta Kw/t comp Kw/t gas tr	ng energy ution energy Illisation energy ressed air energy 6 reatment 10 per tonne processed	15.5 19.97 34.07 62
Goals	Responsible		Deadline	Means	
Goal 1 Distribute the EE analysis monthly among the energy efficiency team. Goal 2 Regular specific EE team meetings to establish specific action plans for SEUs and identified high energy consumption	Energy Efficiency		December 2025	Power Cloud	

Table 17: Objective 2: Energy Consumption

Improve energy efficiency by identifying equipment with high coand establishing action plans to reduce consumption. Internal co BCP-OBJ-2, EE-2025-2024-2023-SP- OBJ-2, MAI-2025-BCP-OBJ-2, OBJ-1, ENG-2025-SP-OBJ-2, RTD-EA-2024-OBJ2	Associate d indicator: kW/tonne of electricity processed	Value Annual target: >94.73 kW/t processed electricity	
Goals	Responsible	Deadline	Resources
Vuis	Kesponsible	Deaulille	Resources

Environmental aspect: water consumption

Table 18: Objective 1: Water consumption

Reduction in natural resource consumption through lower water usage in processes. Shared with maintenance. Internal code: RTD-2025/2024/2023-RO-OBJ-4 / MAI-2025-SP-OBJ-2 / RTD-EA-2025-OBJ1	Associated indicator: Wate consumption (m3/tonne processed)	er	Value Annual target: KPI 1: Water consumption (m3/tonne process Average over the last 3 years (1.06) KPI 2: Electricity consumption (kW/tonne processed): Average over the last 3 years (98 KPI 3: Gas consumption (kW/tonne processe Average over the last 3 years (386)	
Goals	Responsible	Dead	dline	Media
Goal 1 Installation and commissioning of levels in transfer tanks.	Production	Dece 2025	ember	NA

Environmental aspect: improvement of carbon footprint

Table 19: Objective 1: Carbon footprint consumption

 Improve the recycling process to make it more environmentally sustainable Development of a project focused on decarbonising the smelting process. Study of the potential energy use of the reaction gas stream. Study of different alternatives to reduce diffuse ammonia emissions Internal code: RTD-2025/2024/2023-RO-OBJ-4 / MAI-2025-SP-OBJ-2 	Associated indicator: Deg of implementatic according to schedule (%)	mentation ding to		alue nnual target: 100%	
Goals	Responsible	Dead	dline	Resources	
Hylnheat project Goal 2 Development of the ECOESC project to meet objectives Goal 3 Development of laboratory and pre- industrial scale tests for the reduction of	IDi	Dece 2025	ember	NA	

Table 20: Objective 2: Carbon footprint consumption

Exploit the energy from the reaction gas stream to reduce natural gas consumption. Engineering, procurement management, construction and commissioning of Hydrogas plant. ENG-2025-RO-OBJ-1, ENG-2025-SP-OBJ-2, PM-2025-Other-OBJ-4, IDi-2025-2024-2023-SP-OBJ-2; IDI-2025/2024-RO-OBJ1; IDI-2025/2024-RO-OBJ5, IDi-2025-SP-OBJ-1 / IDi-2025-2024-2023-EN-OBJ-2 / EE-2025-RO-OBJ-4	Associated indicator: Degree of implementation according to schedule (%)		Value Annu	al target: 100%
Targets	Responsible	Deadl	line	Means
Goal 1 Basic engineering development Goal 2 Negotiation and contracting of services and purchase of equipment Goal 3 Project planning Target 4 Budget control	ENG	Decen 2025	mber	NA

5. Befesa's environmental performance.

The following section reflects the company's environmental performance.

All the indicators presented below are represented in absolute and relative ratios (per tonne of total waste processed).

5.1 Emissions into the atmosphere.

As stated in the Integrated Environmental Authorisation (IEA), the facility has 10 authorised emission sources, which are listed below:

- Source no. 1: boiler A.
- Focus No. 2: Boiler B.
- Spotlight No. 3-6: Removal of belt filter-Rotary dryer-Scrubber (gas washer)
- Focus no. 4: Torch duct
- Focus no. 5: Removal of the bag filter from the salt slag grinding process.
- Spotlight no. 7: Removal of the aluminium slag grinding filter
- Spotlight no. 8: Sampling furnaces
- Focus No. 9: Scrap grinding
- Spotlight No. 10: Diffuse ammonia emissions

Befesa Aluminio CT Valladolid complies with Royal Decree 100/2011, of 28 January, which updates the catalogue of activities that are potentially polluting to the atmosphere and establishes the basic provisions for its application. The installation, layout and dimensions of connections and access points are adequate for measurements and sampling. The results of the latest inspection are entirely within the authorised limits of current regulations.

The results of the emission measurements taken during 2024 are presented below, along with the emission limit values for authorised sources. As part of the self-monitoring system at Befesa Aluminio, SL CT Valladolid, more measurements are taken than those strictly required by the AAI. The data presented are the average

of the measurements taken in 2024, none of which exceeded the limits set out in the AAI in force at that time.

• Focus No. 1: Boiler A. This boiler is used under normal operating conditions.

Table 21: Focus No. 1:

Parameter evaluated	2020	2021	2022	2023	2024	VLE
CO mg/Nm³	<6.50	3.67	N/A*	5.15	N/A	100
CO kg/t	4.77*10 ⁻⁵	2.53*10 ⁻⁵	N/A	3.84099*10 ⁻⁵	N/A*	N/A
NOx mg/Nm³ expressed as	167.50	178.04	N/A	81	N/A	200
NOX kg/t expressed as NO2	0.001	0.001	N/A	0.00060	N/A	N/A

^{*}Biennial frequency according to AAI

• Focus No. 2: Boiler B. Occasional use (maintenance operations or breakdowns of boiler A)

Table 22: Focus No. 2

Parameter evaluated	2020	2021	2022	2023	2024	VLE
CO mg/Nm³	<7.5	3.9	N/A*	4.13	N/A	100
CO kg/t	5.51*10 ⁻⁵	2.69*10 ⁻⁵	N/A	3.08025E-05	N/A	N/A
NO ^x mg/Nm³ ⁽ expressed as _{NO₂})	68	98.66	N/A	146.3	N/A	200
NOx kg/t expressed as NO2	4.99*10-4	6.81*10-4	N/A	0.00109114	N/A	N/A

^{*}Biennial frequency according to AAI

• Focus No. 3-6: Band filter extraction – Rotary dryer – Scrubber

Table 23: Focus No. 3-6:

Parameter evaluated	2020	2021	2022	2023	2024	VLE
HCI mg/Nm³	<0.1	0.10	0.10	0.19	0.016	230
HCl kg/t	7.34*10 ⁻⁷	7.35*10 ⁻⁷	6.31*10 ⁻⁷	1.44*10 ⁻⁶	1.08*10 ⁻⁷	N/A
NH3 mg/Nm³	9.70	0.4925	0.058	0.227	0.152	10*
NH3 kg/t	7.12*10 ⁻⁵	3.42*10 ⁻⁶	3.66*10 ⁻⁷	1.69*10 ⁻⁶	1.02*10-6	N/A
_{РНЗ} mg/Nm ³	N/A	0.024	0.023	0.024	0.438	0.5
_{РНЗ} kg/t	N/A	1.70*10 ⁻⁷	1.45*10 ⁻⁷	1.78*10 ⁻⁷	2.96*10-6	N/A
_{SH2} mg/Nm ³	N/A	0.21	0.18	0.183	0.109	2*
SH2 kg/t	N/A	1.45*10 ⁻⁶	1.13*10 ⁻⁶	1.36*10 ⁻⁶	7.37*10 ⁻⁷	N/A
Particles mg/Nm³	-	0.97	0.71	0.04	0.51	5*
Particles kg/t	N/A	6.70*10 ⁻⁶	4.48*10 ⁻⁶	3.20*10 ⁻⁷	3.45*10 ⁻⁶	N/A

^{*} Annual frequency according to AAI

• Focus No. 4: Torch

No measurements are taken as this is not a requirement of the integrated environmental authorisation.

• Focus No. 5: extraction of bag filter for grinding saline slag.

Table 24: Focus No. 5

Parameter evaluated	2020	2021	2022	2023	2024	VLE
Particles, (PM10) mg/Nm³	<1	0.66	0.45	0.36	0.46	5
Particles, (PM10) kg/tonne processed	7.34*10 ⁻⁶	4.56*10 ⁻⁶	2.83*10-6	2.68*10 ⁻⁶	3.11*10 ⁻⁶	N/A

^{*} Annual frequency according to AAI

• Focus No. 7: extraction filter for grinding aluminium slag.

Table 25: Focus No. 7

Parameter evaluated	2020	2021	2022	2023	2024	VLE
Particles, (PM10) mg/Nm³	<1	N/A	1.47	0.50	0.58	5
Particles, (PM10) kg/tonne processed	7.34*10 ⁻⁶	N/A	9.27*10 ⁻⁶	3.72*10 ⁻⁶	3.92*10 ⁻⁶	N/A

^{*} Annual frequency according to AAI

Focus No. 8: sampling furnace.

Table 26: Focus No. 9

Parameter evaluated	2020	2021	2022	2023	2024	VLE
Particles, (PM10) mg/Nm³	<1	1.55	<0.59	3.27	2.4	5
Particles, (PM10) kg/tonne processed	7.34*10 ⁻⁶	1.07*10 ⁻⁵	3.723*10 ⁻⁶	2.43*10 ⁻⁵	1.62*10 ⁻⁵	N/A

^{*} Annual frequency according to AAI

• Focus No. 9: extraction and grinding of aluminium scrap.

During the last three years (between 2022 and 2024), no measurements have been taken of emissions from scrap grinding facility no. 9, as the facility has not been in use. This has been duly reported to the Regional Government of Castile and León.

Source No. 10: Diffuse ammonia emissions

Table 27: Source No. 10

Parameter evaluated	2020	2021	2022	2023	2024	VLE
Average points (NH3) mg/Nm3	-	-	0.091	0.109	0.080	10
Average points (NH3) kg/tonne processed	-	-	5.76*10 ⁻³	8.15*10 ⁻⁷	5.37*10 ⁻⁷	NA

^{*} annual frequency according to AAI

The air containing $_{NH3}$, originating from the Paval drying process, as well as that originating from the extraction of the production facility, is conveyed to the three scrubbing towers where it will be purified by scrubbing with sulphuric acid ($_{H2SO4}$).

The data in the table show the average results from the three sampling points in the report, all of which are individually within the established limits.

In 2024, measurements were taken on a quarterly basis.

In summary, **total** channelled emissions (relating to authorised emission sources measured in 2024) of CO, $_{NOx}$, Cl $^{-}$, $_{NH3}$, $_{SO2}$ and PM were as follows.

Table 28: Summary of Emissions

Parameter evaluated	2020	2021	2022	2023	2024
Particulate matter (PM10)	402	716	1035	443.76	476.62
Particles, (PM10) kg/ tonnes processed	0.003	0.005	0.007	0.003	0.003
NO2 kg	4,466	4,795	4,576	2,774	2,276.81
NO2 kg/tonne processed	0.033	0.033	0.029	0.020	0.015
CO kg	160	99	94	176	144.63
CO kg/tonne processed	0.001	0.0007	0.0006	0.0013	0.0009
Cl ⁻ kg	22	60	95	141	9.16
CI- kg/tonne processed	1.61*10-4	4.14*10 ⁻⁴	5.99*10 ⁻⁴	0.00105	6.19*10 ⁻⁵
_{NH3} kg	2194	261	55	165	87.08
NH3 kg/tonne processed	0.016	0.002	0.0003	0.0012	0.0005
_{РНЗ} kg	-	12.65	21.76	17.48	250.93
_{РНЗ} kg/t	-	7.98*10 ⁻⁵	0.0001	0.0001	0.0016
so2 kg	498	0	0	133.3	62.44
_{so2} kg/tonne processed	0.004	0	0	0.00099	0.00042

Greenhouse gas emissions

In 2024, the ISO 14064:2019 audit was carried out on the greenhouse gas (GHG) inventory. The verification process consists of a systematic review of the GHG emissions produced by the organisation. Befesa Aluminio CT Valladolid has submitted emissions in categories 1 to 6 for verification in accordance with the latest revision of the ISO 14064 standard, together with the plants of the Salt Slag Division (which also includes the salt slag recycling plants located in Lünen (Germany) and Hanover (Germany). The verification was carried out by an independent verification body (AENOR).

In relation to annual greenhouse gas emissions, the total direct emissions (category 1) and indirect emissions from electricity (category 2) of Befesa Aluminium CT Valladolid in 2024:

Table 29: Emissions

GHG emissions	2020	2021	2022	2023	2024
co2 (t co2 equiv.)	16,569	16,781	16,409	13,767	12,532
co2 (t CO2 equiv./ t processed)	0.114	0.115	0.103	0.127	0.085
сн4 (t со2 equiv.)	7.10	7.39	6.25	6.61	6.32
сн4 (t CO2 equiv./ t processed)	5.21*10 ⁻⁵	5.10*10 ⁻⁵	3.95*10 ⁻⁵	4.93*10 ⁻⁵	4.28*10 ⁻⁵
N2O (t co2 equiv.)	9.64	9.59	8.31	9.05	9.52
N2O (t CO2 equiv./ tonnes processed)	7.08*10 ⁻⁵	6.62*10 ⁻⁵	5.24*10 ⁻⁵	6.75*10 ⁻⁵	6.44*10 ⁻⁵
HFC (t co2 equiv.)	0	0	0	0	0
HFC (t CO2 equiv./ tonnes processed)	0	0	0	0	0
_{SF6} (t _{CO2} equiv.)	0	0	0	0	0
_{SF6} (t CO2 equiv./ t processed)	0	0	0	0	0

^{*}No PFCs (perfluorocarbons) or NF3 (nitrogen trifluoride) have been emitted.

5.2 Noise.

The noise and vibrations emitted at the facilities are typical of industrial treatment plant activity, due to moving machinery and the movement of lorries transporting raw materials or products.

For the assessment of noise emissions into the atmosphere, both current legislation and the frequency and emission limits established in the AAI (night-time noise: 55 Laeq dB (A) and daytime noise: 65 Laeq dB (A)) have been taken as a reference.

Law 5/2009 of 4 June 2009 on noise in Castile and León has also been taken into account.

Article 13 of this law establishes that, in the event of corrections being made due to the presence of emerging tonal components, low frequency or impulsive noise, the limits shall be 5 dB(A) higher than the corresponding value in Annex I.

For this reason, the limits applicable to Befesa Aluminio CT Valladolid are **70 dB**(A) during the day and **60 dB**(A) at night.

The results of the biennial measurements are as follows:

Table 30: Noise

Date 15/05/2023	Point A dB	Point B dB	Point C dB	Point D dB	Point E dB	Point F dB	VLE
Daytime	56.4	60.1	56.9	61.3	53.7	52.8	70dB
Night	55.7	52.8	58.2	55.4	55.4	54.8	60dB
Date 30/05/2025	Point A dB	Point B dB	Point C dB	Point D dB	Point E dB	Point F dB	VLE
Daytime	69.5	60.2	52.4	66.1	56.2	57.5	70dB
Night	55.1	59.4	55.7	59.1	59.0	55.9	60dB

The measurement points are shown on the following map:

5.3 Water

At Befesa Aluminium CT Valladolid, all water generated during the production process and rainwater or runoff water is collected through a system of tanks.

The recovered water is pumped back into the process to cover part of its consumption needs. Surplus rainwater is sent to the Rio Duero canal drainage system, for which it has a water discharge authorisation granted by the Duero Hydrographic Confederation; the control parameters are analysed quarterly by an accredited body. The analytical results and comparison of the limit values for recent years are as follows:

• Control point 1: CP-1

Table 31: PC1

Parameter	2020	2021	2022	2023	2024	AAI limit value
рН	7.42	7.22	7.35	7.37	7.33	6-9
Aluminium	0.007	0.1	0.1	0.1	0.1	0.5 mg/L
Suspended solids (MES)	8.75	10	10	10	10	35 mg O2/ L
COD	39	46.75	54.75	36.5	30	125 mg O2/ L

The data in the table shows the average of the four analyses carried out throughout the year. All of them are within the established limits.

With regard to rainwater discharge, during 2024 it amounted to $9,207 \, m^3$, which is within the limits set in our Integrated Environmental Authorisation of $31,500 \, m^3$.

Control point 2: CP-2

There is a septic tank with sanitary water filtration into the ground. This discharge is characterised as "urban".

Table 32: PC2

Parameter	2020	2021	2022	2023	2024	AAI limit value
BOD5	<15	34	19.75	21.75	<15	60 mg O2/ L
COD	94	80	42.50	72.5	41.25	200 mg O2/ L
Suspended solids (MES)	33	28	7.25	23.5	9.3	90 g/L
рН	NA	8	7.97	7.72	7.77	5.5-9.5 units pH

Quarterly checks are carried out. The data in the table shows the average of the four annual analyses. All of them are within the established limits.

Taking into account the number of workers and average water consumption, the estimated discharge from the septic tank is **613.86** m³compared to **990** m³for the AAI.

- Estimated discharge = Tm*Cm*d (2023) → 86 x 33 x 216.3 = 613,859 L
- Tm: average number of workers = 86 workers
- Cm: Average water consumption per person (without shower) = 128 L (average water consumption according to INE*) 100 L (shower) = 33 L
 - Data taken from the report "Statistics on Water Supply and Sanitation for the Year 2024" published in July 2024 by the National Institute of Statistics (INE) in 2022.
 - The average water consumption for a shower according to the WHO is 100L for 5 minutes.
- d (2024): Days worked in 2024 at the Valladolid Training Centre = 216.3 days

5.4 Waste production.

In accordance with Law 7/2022, of 8 April, on waste and contaminated soil for a circular economy, Befesa Aluminio CT Valladolid is considered a producer of hazardous waste.

• The hazardous waste generated during 2024 is as follows:

Table 33: RTP

Hazardous waste AAI	LER code	2020	2021	2022	2023	2024
Jsed oil (t)	130205	1.70	2.86	1.77	1.45	1.85
Ised oil (t) / t processed		1.35*10 ⁻⁵	1.97*10 ⁻⁵	1.11*10 ⁻⁵	1.08*10 ⁻⁵	1.25*10-5
erosols (t)	160504	0	0	0.055	0.03	0.01
erosols (t) / t processed		0	0	3.47*10 ⁻⁷	2.23*10 ⁻⁷	6.76*10 ⁻⁶
ontainers containing hazardous	150110	14.32	0.6	0.420	0.29	0.31
ubstance residues (t) containers containing hazardous ubstance residues t) / t processed		1.05 *10-4	4.14 *10 ⁻⁶	2.65*10 ⁻⁶	2.16*10 ⁻⁶	2.09*10-6
Absorbents, filtration materials (t	150202	3.10	6.97	4.7	2.55	8.61
bsorbents, filtration materials ') / t processed		2.28*10 ⁻⁵	4.81*10 ⁻⁵	2.97*10 ⁻⁵	1.90*10 ⁻⁵	5.82*10
Oil filters (t) Oil filters	160107	0.07	0.12	0.04	0.12	0
t) / t rocessed		5.14*10 ⁻⁷	1.38*10 ⁻⁶	2.52*10 ⁻⁷	8.94*10 ⁻⁷	0
Chemicals (t) Chemicals (t) / t processed	160506	0.02	0.04	0.015	0.015	0.39
		1.47*10 ⁻⁷	8.29*10 ⁻⁷	9.46*10 ⁻⁸	1.11*10 ⁻⁷	2.63*10
Fluorescent tubes (t)	200121	0.13	0	0.01	0.135	0.01
luorescent tubes (t) / t rocessed		9.54*10 ⁻⁷	0	6.31*10 ⁻⁸	1.006*10⁻6	6.76*10
atteries (t)	200133	0	0.040	0	0	0
atteries (t) / t processed		0	2.76*10-4	0	0	0
Ion-halogenated organic solvent	120301	1.2	1.4	1.4	1.2	1.35
i) Ion-halogenated organic solvent alogenated organic solvent (t) / processed		8.81*10 ⁻⁶	9.67*10 ⁻⁶	8.83*10 ⁻⁶	8.94*10 ⁻⁶	9.13*10*
Grinding powder (t)	100321	427.29	0	0	1.45	0
rinding powder (t) / t rocessed		3.14*10-3	0	0	1.08*10 ⁻⁵	0
AES (t)	191202					1.08
AES (t) / processed t						7.30*10
cid solutions (t)	60106					0.18
cid solutions :) / t processed						1.21*10
otal (t)		447.83	12.03	8.42	5.79	13.79
Total (t) / processed t		0.0031	8.3*10 ⁻⁴	5.31*10 ⁻⁵	4.31*10 ⁻⁵	9.33*10

Non-hazardous waste generated during 2024 is as follows:

Table 34: RNP

Non-hazardous waste Hazardous waste AAI	Code LER	2020	2021	2022	2023	2024
Construction waste	170107	10.28	8.98	0	0	0
(C&D) (t) Construction Waste (C&D) (t) / t processed		7.55*10 ⁻⁵	6.20*10 ⁻⁵	0	0	0
Cardboard and paper	150101	2,760	2.26	2.34	2.54	5.62
t) Cardboard and paper (t) / t processed		2.03 *10 ⁻	1.56*10 ⁻⁵	1.48*10 ⁻⁵	1.86*10 ⁻⁵	3.80*10 ⁻⁵
Wood (t)	150103	8.10	9.24	8.20	7.08	11.54
Wood (t) / t processed		5.95*10 ⁻⁵	6.38*10⁻⁵	5.17*10 ⁻⁵	5.28*10 ⁻⁵	7.80*10-5
Scrap (t) Scrap (t) / t	Miscellaneo us	1,671.98	1,785.56	1,838.00	£1,279.64	1,257.40
processed		1.23*10 ⁻³	0.012	0.11	0.009	0.0085
Septic tank sludge (t)	200304	67.44	66.92	64.3	52.5	51.66
Septic tank sludge (t) / t processed		4.95*10 ⁻⁴	4.62*10-4	4.00*10-4	3.91*10-4	3.49*10-4
Plastic (t)	150105				4.16	13.88
Plastic (t) / t processed	/ t				3.10*10 ⁻⁵	9.39*10 ⁻⁵
Composite packaging (MSW) (t)	150105					13.32
Composite packaging (MSW) (t) / t processed						9.013*10 ⁻⁵
Textile packaging (t)	150109					17.28
Textile packaging (t) / tonnes processed						0.00011
Composite packaging (t) Composite packaging	150105					12.80
(t) / t processed						8.66*10 ⁻⁵
Aluminium oxides outside specification (t) Aluminium oxides	100330					454.66
outside specification (t) / t processed						0.0030
Granular waste contaminated with plastic (t)	191002					620.88
Granular waste contaminated with plastic (t) / t processed						0.0042
Total (t)	1	1,760	1,873	1,913	1,315	2,459.04
Total (t) / processed t		0.011	0.013	0.012	0.0098	0.016

All waste produced has been delivered to authorised waste management companies for treatment and/or disposal.

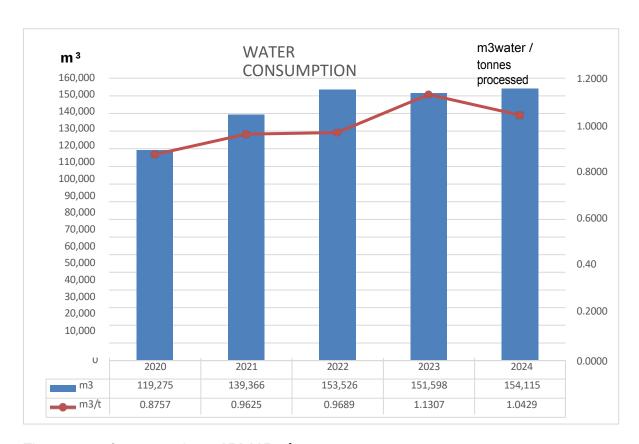
Table 35: RTP balance

Hazardous waste	2023	2024	%
Total (t)	5.79	13.79	138
Total (t/ processed t)	4.31*10 ⁻⁵	9.33*10 ⁻⁵	116

Table 36: RNP balance

Non-hazardous waste	2023	2024	%
Total (t)	1,341.72	2,459.04	83
Total (t/ processed t)	0.010	0.016	66

There has been an increase in both hazardous and non-hazardous waste generation at the Valladolid Work Centre, due to the refurbishment of old disused facilities, which have been left empty and available for other possible uses in the event that it is decided to rehabilitate them, making them much safer. This has been the reason for a series of interventions recommended through the business continuity plan proposed by the Befesa corporation.


Most of the waste has been managed through a recovery or recycling operation, thus avoiding it ending up in landfill without being recovered.

6. Basic environmental indicators.

6.1. Water consumption.

The volume of water from the well used in process 1 per total tonne processed is shown below.

The amount of water used was 154,115 m3

On 16/10/2023, the request to increase the water catchment flow was accepted by the Water Quality Department to $165,600 \, \mathrm{m}^3$.

The increase in the volume collected from the well does not entail any change in the characteristics of the discharge, as justified in a communication to the Duero Hydrographic Confederation.

In 2024, water consumption at the plant was optimised, improving water transfer between the dissolution and crystallisation areas and installing new equipment, which reduced water consumption.

In all other processes, less than 1% of mains water is consumed compared to well water.

6.2. Energy consumption.

The main fuel used by Befesa Aluminio S.L. CT Valladolid is natural gas, which is used in steam generators, the rotary dryer and the torch.

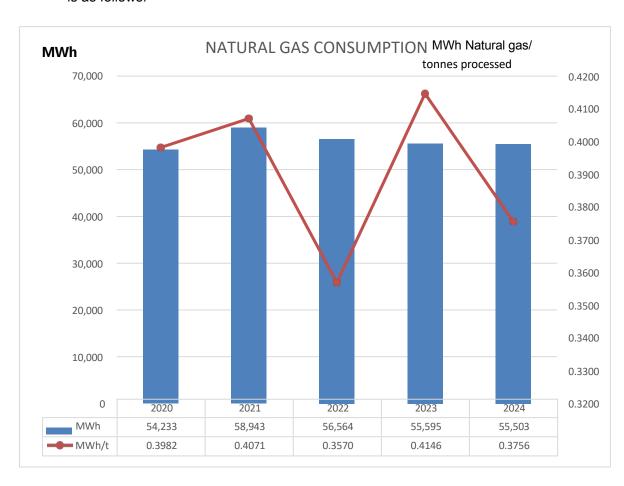
Electricity is used to power the motors of pumps, mills, conveyor belts, fans, etc., as well as to control the entire facility.

Diesel fuel is used for internal transport (loaders and forklifts), air conditioning and changing rooms in part of the facility, and nitrogen is used for reactor inerting.

• **Electricity:** Total electricity consumption over the last four years per tonne processed is as follows:

Electricity consumption has fallen in relative terms in 2024 due to the installation of new, more efficient equipment at the plant.

No energy is produced at the CT Valladolid facilities, as the organisation uses renewable energy sources, with the facility producing 0 MWh of renewable energy.

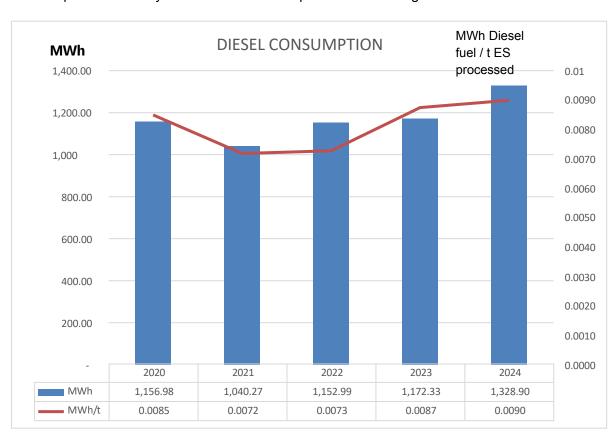

The energy purchased by the organisation from renewable energy sources accounts for **6.9%** of annual consumption in **2024.**

The origin of the electricity purchased is guaranteed by the breakdown of the mix of production technologies corresponding to the energy sold by the marketing company, which is presented on each bill.

Table 37: Renewable energy consumed

	Renewable energy consumed							
Year	% Renewable energy consumed	MWh	MWh / t					
2020	14	1,798	0.013					
2021	19	2,613	0.018					
2022	26	3,739	0.024					
2023	31	4,445	0.023					
2024	6.9	944.75	0.006					

• **Natural gas:** Natural gas consumption in MWh/tonne processed over the last 5 years is as follows:

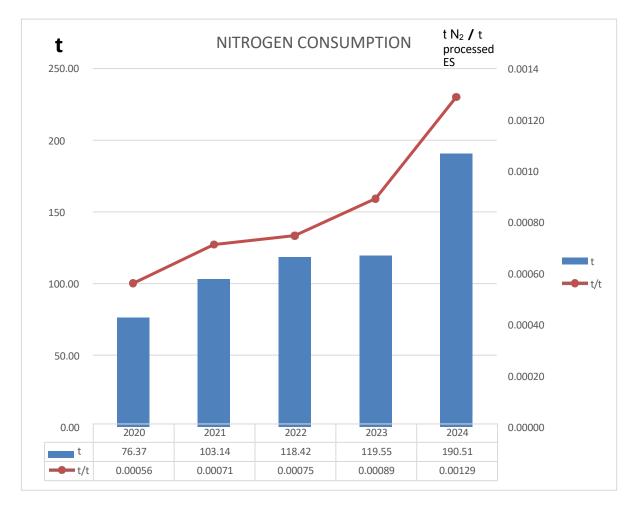

The use of natural drying of paval has led to a reduction in natural gas consumption in 2024.

Likewise, gas consumption per tonne of slag treated has been reduced thanks to preventive maintenance on the boilers, improvements in crystallisation management in the evaporators, and increased frequency of cleaning the exchangers, which improves the equipment's performance.

Diesel: as indicated above, diesel is used
mainly for heating offices and as fuel for mobile equipment (shovels, forklifts, etc.). The
consumption figures for the last three years are shown below:

Diesel consumption has increased slightly due to a change in loaders, with larger loaders being used, and the increase in production in 2024 will also lead to a greater number of movements and therefore higher diesel consumption.

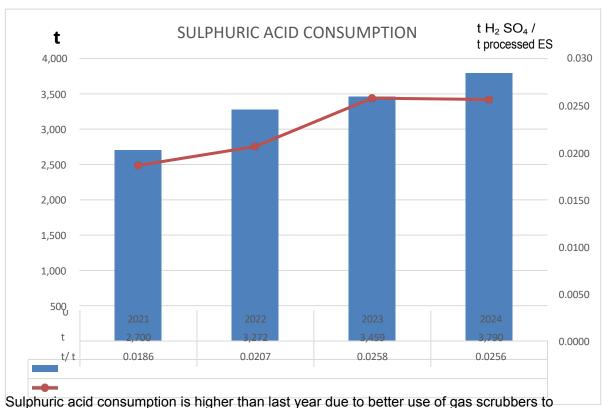
Consumption in recent years in MWh/tonne of processed salt slag is as follows:



6.3. Nitrogen consumption.

Nitrogen is used for the inerting of equipment.

Nitrogen consumption varies depending on the number of equipment shutdowns during the reaction stage. The consumption for the last five years is shown below in t N2/t of treated salt slag:


Nitrogen consumption increased in 2024 due to increased maintenance work in the reaction area.

6.4. Sulphuric acid consumption

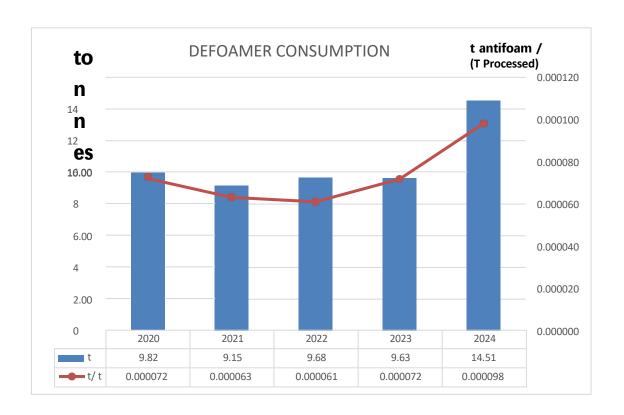
Sulphuric acid consumption occurs in gas scrubbers, which, together with process gases, generate ammonium sulphate.

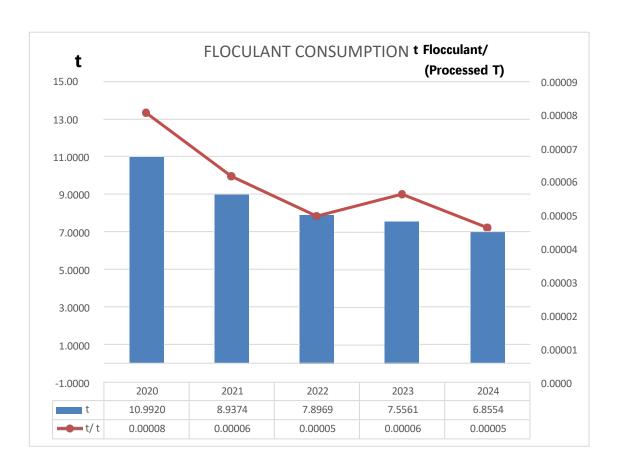
Sulfuric acid consumption per tonne of processed salt slag in recent years is as follows:

Sulphune acid consumption is higher than last year due to better use of gas scrubbers to

capture the ammonia generated in the hood installation in the paval warehouse.

The increase in H2SO4 consumption has a direct impact on greater use of the NH3 generated in the process and higher production of ammonium sulphate.


6.5. Additive consumption


The additives used in the recycling process are:

- Flocculant: used in the reaction-decantation process of solids.
- Defoamer: to reduce foam formation during reaction and decantation.

The average consumption of additive (in tonnes) per tonne of processed salt slag over the last five years has been:

Both defoamer and flocculant consumption remain within normal and constant ranges, bearing in mind that their use varies slightly depending on the nature of the waste received from customers.

6.6. Biodiversity.

The following table shows the built area at Befesa Aluminio CT Valladolid.

Table 38: Biodiversity

Land use	2022		2023		2024	
	Usable area (^{m²})	Usable area (^{m²} /tonne processed)	Usable area (^{m²})	Usable area (m²/t processed)	Usable area	Usable area (m² /t processed)
Total use (buildings)	38,757.37	0.244	38,757.37	0.289	38,757.37	0.262276397
Total sealed area (impermeable)	97,500.00	0.615	97,500.00	0.727	97,500.00	0.659795768
Total area in the centre oriented according to nature	0	0	0	0	0	0
Total area outside the centre oriented according to nature	0	0	0	0	0	0
Total occupancy of the facilities	136,257.37	0.673	136,257.37	1,016	136,257.37	0.92

The total occupancy of the facilities is 106,700 m². There is no impact on biodiversity, and neither the land nor the surrounding area is considered a special protection area.

Compliance with legal requirements and other requirements subscribed to by the

organisation In 2024, no legal requirements applicable to the company's activity have come into force, nor have any additional requirements been subscribed to. On the other hand, with regard to compliance with applicable requirements, in 2024:

Integrated Environmental Authorisation

Royal Legislative Decree 1/2016, of 16 December, regulates the integrated prevention and control of pollution by requiring Integrated Environmental Authorisation (IEA). This authorisation unifies all environmental permits and requires the application of Best Available Techniques (BAT), ensuring a high level of environmental protection in industrial activities.

At the end of 2020, Order FYM/1088/2020, of 13 October, was published, relating to the review for adaptation to BAT and waste regulations of the companies "Befesa Aluminio, S.L." and "Befesa Aluminio, S.L.U."; to Non-Substantial Modification 17 (MNS17) of Befesa Aluminio, S.L.U.; and the unification of the environmental authorisations for the scrap, aluminium waste and salt slag treatment and recovery plants in the municipality of Valladolid, belonging to both companies, under Befesa Aluminio, S.L.U. as the sole owner. The order limits its effects to the review and adaptation to best available techniques (BAT) of the integrated environmental authorisation (IEA), the incorporation of non-substantial modification 17 (MNS17) and the unification of the environmental authorisations held by Befesa Aluminio, S.L.U. The implementation of the modifications contained in this order will take effect during the first four months of 2021.

ORDER FYM/1007/2021, of 27 August, amending Order FYM/1088/2020, of 13 October, on the review for adaptation of BAT and waste regulations for the companies "Befesa Aluminio, S.L." and "Befesa Aluminio, S.L.U." and Non-Substantial Modification 17 (MNS17) of "Befesa Aluminio, S.L.U." and the unification of the environmental authorisations of the scrap, aluminium waste and salt slag treatment and recovery plants in the municipality of Valladolid, belonging to both companies, under Befesa Aluminio, S.L.U. as the sole owner, as a result of Non-Substantial Modification 18 (MNS 18). 043-21-MNSVA

- Installation of a new reactor that will act as a backup to maintain production rates during cleaning, shutdowns and maintenance of the other five reactors.
- Installation of metal separation equipment at the end of the salt slag crushing process in order to increase the recovery of the aluminium metal contained therein, as well as to increase the quality of the aluminium concentrates obtained in this part of the process.

ORDER MAV/1027/2022, of 3 August, amending Order FYM/1088/2020, of 13 October, on the review for adaptation to BAT and waste regulations of the companies "Befesa Aluminio, S.L." and "Befesa Aluminio, S.L.U." and non-substantial modification 17 (MNS17) of "Befesa Aluminio, S.L.U." and the unification of the environmental authorisations of the scrap, aluminium waste and salt slag treatment and recovery plants in the municipality of Valladolid, belonging to both companies, into "Befesa Aluminio, S.L.U." as the sole owner, as a result of non-substantial modification 19 (MNS 19). 027-22-MNSVA

- Expansion and modification of the collection system currently installed in the aluminium oxide storage warehouse (Paval), by replacing and expanding the current hood and installing two new adjacent hoods, thereby increasing storage and collection capacity.
- Increase in the treatment capacity of the gas scrubbers with the installation of new filling and expansion of the contact/scrubbing surface, which will improve the system's performance from 95% to 97.5%.

Emissions:

Royal Legislative Decree 1/2016, of 16 December, approving the revised text of the Law on Integrated Pollution Prevention and Control.

✓ Submitting the measurements taken in 2024 to the Regional Government of Castile and León, with the limits established in the corresponding IEA (Integrated Environmental Authorisation).

Royal Decree 508/2007 of 20 April, regulating the provision of information on emissions under the E-PRTR Regulation and integrated environmental authorisations.

✓ Reporting all emissions and waste data to the Castilla y León PRTR Register in February 2024.

Royal Decree 203/2024, of 27 February, developing aspects relating to the free allocation of emission allowances for the years 2026-2030 and other aspects related to the exclusion regime for installations from 2026 onwards.

✓ The activity is exempt from GHG emission allowance reporting and trading.

Noise and vibrations:

Regulations for the Protection of the Environment against Noise and Vibration Emissions of the City Council of Valladolid.

Submitting a technical report on biennial measurements certifying technical compliance with noise levels, the last one being submitted in May 2025 and complying with all measurement points.

Waste:

Law 7/2022, of 8 April, on waste and contaminated soil for a circular economy

✓ Compliance with this Law for all waste generated and processed at the facilities.

Royal Decree 553/2020, of 2 June, regulating the transfer of waste within the territory of the State, not sending any waste generated in the workplace outside the territory.

- ✓ Compliance with the requirements established for the transfer of waste. Registration in the Register of Hazardous and Non-Hazardous Waste Managers with number 7G04084700000009 and 07G01964700000009 respectively, and registration in the Hazardous Waste Producer Register under number 07P01094700000009
 - ✓ Submission in February 2024 of both the annual report for managers and producers for the year 2024.
- ✓ Submitting the waste minimisation study for the period 2023-2026. Royal Decree 646/2020, of 7 July, regulating the disposal of waste by landfill.
 - ✓ Compliance with the same.

Soil:

Royal Decree 9/2005, of 14 January, establishing the list of activities that are potentially polluting to the soil and the criteria and standards for declaring soil contaminated.

- ✓ In compliance with the delivery of the soil report dated 05/10/2016, this will be renewed when there is a change of use, an extension or a request from an interested party.
- ✓ In June 2019, a detailed analytical characterisation of the subsoil was carried out at the Befesa Aluminio CT Valladolid facilities. An impact on the subsoil contamination by hydrocarbons not related to any source of contamination at the site, but rather to a previous accidental spill prior to the paving of the plot. As there are soils with concentrations above the generic reference levels (NGRs) set out in this legislation, a Quantitative Risk Analysis (QRA) was carried out. This report determines that, after analysing the possible current and future scenarios at the site and its surroundings, there is no unacceptable risk to human health arising from the existing contamination in the site's soils.
- ✓ On 16/07/2020, the Regional Government of Castile and León received the "Communication on acceptance of the soil status report in accordance with Royal Decree 9/2005."

Energy efficiency:

Royal Decree 56/2016, of 12 February, transposing Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency, with regard to energy audits of service providers and energy auditors and the promotion of energy supply efficiency.

✓ On 24/05/2024, the energy audit report is issued.

Environmental responsibility:

Law 26/2007, of 23 October, on Environmental Responsibility and Order ARM/1783/2011, of 22 June, whereby before 31 October 2018, notification must be given of the

establishment of a financial guarantee enabling the company to meet the environmental liability inherent in its activity, should this become enforceable.

Royal Decree 2090/2008, of 22 December, approving the Regulations for the partial implementation of Law 26/2007.

Law 11/2014, of 3 July, amending Law 26/2007, of 23 October, on environmental liability.

Royal Decree 183/2015, of 13 March, amending the Regulations partially implementing Law 26/2007, of 23 October, on Environmental Liability, approved by Royal Decree 2090/2008, of 22 December.

- ✓ On 19 July 2018, the declaration of responsibility determining the financial guarantee was delivered to the Regional Government of Castile and León.
- ✓ The risk analysis report is carried out by an external company. Following the Environmental Risk Analysis (ARA), it can be concluded that, given the amount of the costs of repairing the potential environmental damage that can be expected, within the framework of Law 26/2007 on Environmental Responsibility, there is no obligation to deposit a mandatory financial guarantee.
- ✓ In March 2022, a new analysis and assessment report is carried out on the Environmental risk by external company, as a result of one of the requirements of Annex III of the Environmental Conditions of ORDER FYM/1088/2020. As in the previous report, it is concluded that there is no obligation to deposit a mandatory financial guarantee. This Risk Assessment will be reviewed when the new BATs come into force.

Royal Decree 208/2022, of 22 March, on financial guarantees in the field of waste.

✓ In compliance with the same.

Chemical products:

Royal Decree 656/2017, of 23 June, approving the Regulation on the Storage of Chemical Products and its Complementary Technical Instructions MIE APQ 0 to 10.

✓ In compliance with the same.

REGULATION (EU) 2019/1009 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 5 June of 2019 laying down provisions on the making available on the market of EU fertilising products, amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003

✓ In compliance with the same.

Legionella:

Royal Decree 487/2022, of 21 June, establishing health requirements for the prevention and control of legionellosis.

✓ Compliance with all operating notifications and maintenance operations, with the new PPCL plans.

Oil facilities:

Royal Decree 2085/1994, of 20 October, approving the Regulations on Petroleum Facilities (Amended by Royal Decree 1523/1999, of 1 October).

✓ The relevant periodic inspections of the facilities are carried out

Firefighting facilities:

Royal Decree 164/2025 approving the Regulations on fire safety in industrial establishments.

✓ Compliance with the conditions for industrial establishments in the event of fire, as set out in the latest update of 10 May 2025.

Electrical installations:

Royal Decree Royal Decree 842/2002, of 2 August, approving the Low Voltage Electrotechnical Regulations.

✓ Compliance with the requirements established in terms of inspections.

Royal Decree 337/2014, of 9 May, approving the regulations on technical conditions and safety guarantees in high-voltage electrical installations and their technical instructions.

✓ Compliance with the requirements established in terms of inspections.

Thermal installations:

Royal Decree 1027/2007 approving the Regulation on Thermal Installations in Buildings. The Royal Decree was drawn up jointly by the Ministry of Industry, Tourism and Trade and the Ministry of Housing.

Royal Decree 178/2021, of 23 March, amending Royal Decree 1027/2007, of 20 July, approving the Regulation on Thermal Installations in Buildings.

- ✓ Registered in January 2017, the thermal installations of several rooms in the workplace.
- ✓ The relevant periodic inspections of the installations are carried out.

Goods transport:

European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR)

✓ In compliance with its latest amendment of 2025, providing training on the subject to workers involved in the matter.

Water.

Authorisation from the Duero Hydrographic Confederation for the discharge of sanitary wastewater onto the land.

- ✓ Submission of the annual declaration report.
- ✓ Compliance with the requirements of Royal Legislative Decree 1/2016, which approves the revised text of the Law on Prevention and Integrated Control of Pollution.
- ✓ Submitting the measurements taken during 2021 to the Regional Government of Castile and León, complying with the limits established in the AAI.

Authorisation has been obtained from the Duero Hydrographic Confederation for direct discharge into the Pisuerga River through the Duero canal drain.

- ✓ Submitting the annual declaration report.
- ✓ On 16/10/2023, the characteristics of the groundwater use concession with the Duero Hydrographic Confederation were modified, requesting a maximum annual volume of 165,600 ^{m²}.

Order FYM/1088/2020 establishes the effluent emission limit value at 31,500 ^{m³} per year.

✓ Compliance with the new limits established.

EMAS:

COMMISSION REGULATION (EU) 2018/2026 of 19 December 2018 amending Annex IV to Regulation (EC) No 1221/2009 of the European Parliament and of the Council on the voluntary participation by organisations in a Community eco-management and audit scheme (EMAS) COMMISSION REGULATION (EU) 2017/1505 of 28 August 2017 amending Annexes I, II and III to Regulation (EC) No 1221/2009 of the European Parliament and of the Council on the

III to Regulation (EC) No 1221/2009 of the European Parliament and of the Council on the voluntary participation by organisations in a Community eco-management and audit scheme (EMAS)

DECREE 53/2015, of 30 July, establishing the procedures for the processing, suspension and cancellation of registration in the Register of organisations participating in the Community environmental management and audit scheme in the Community of Castile and León.

Regulation (EC) No 1221/2009 of the European Parliament and of the Council of 25 November 2009 on the voluntary participation by organisations in a Community eco-management and audit scheme (EMAS), and repealing Regulation (EC) No 761/2001 and Commission Decisions 2001/681/EC and 2006/193/EC.

Royal Decree 239/2013 of 5 April, establishing the rules for the application of Regulation (EC) No 1221/2009 of the European Parliament and of the Council of 25 November 2009 on the voluntary participation by organisations in a Community eco-management and audit scheme (EMAS), and repealing Regulation (EC) No 761/2001 and Commission Decisions 2001/681/EC and 2006/193/EC.

8.-Communication and participation in the field of the environment.

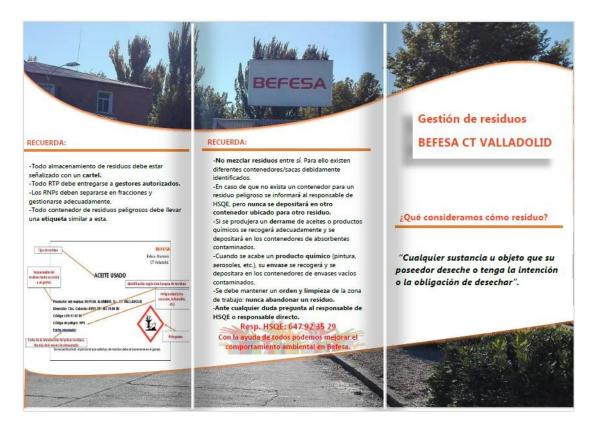
Befes Aluminio CT Valladolid has communication, consultation and participation procedures in place, which include aspects such as internal and external communication.

Throughout 2024, there have been no penalties related to environmental issues or complaints from stakeholders.

Throughout 2024, 37 improvement actions were recorded through the suggestion box available to all employees, which are collected, analysed, evaluated and responded to by management. Two of these were environmental in nature.

Table 39: Environmental Suggestions

Code	SGI aspect	Туре	Date of identification	Description	Evidence
Suggestion for improvement - Plastic, wood and rubber waste containers	MA	AM	24/05/2024	The height at which the containers are located makes it difficult to empty the waste bins.	With the new Ecoembres project, the height at which containers are emptied will be reduced, and smaller containers with bags will be used. Container installation is planned for June.
Suggestion for improvemen t - Chemical spills in the shovel workshop	MA	AM	05/06/2024	Chemical spills occur during the filling of containers.	Taps have been installed


In order to consult and involve employees and/or their representatives, the Valladolid workplace carries out the following activities:

- Works council: the works council, together with the company's management, meets periodically in accordance with current legislation. The minutes of these meetings are published on notice boards.
- Investigations of accidents and environmental incidents with the generation of lessons learned documents.

- Complaints channel, located on the Befesa website (<u>www.befesa.com</u>), through which anyone can anonymously report breaches of the code of conduct.
- Suggestion box: there is a suggestion box available to employees in the canteen at the facilities.
- Toolbox talks: a brief presentation to employees on a single aspect of HSQE.
- Preventive Environmental Observations (OPE): plant visits to review compliance
 with environmental management procedures, during which discussions are held
 with workers and potential opportunities for improvement or deficiencies are
 recorded.
- 5S: 5S audits (order and cleanliness), regulated by the corresponding technical instructions.
- Informal meetings, which may be daily, weekly or monthly, in which, although workers do not participate directly, demands or suggestions are collected and and analysed by process managers and shift supervisors.
- Notice boards: employee participation is encouraged through the publication of competitions, new job vacancies, and information is provided to receive suggestions for ongoing or planned projects
- Psychosocial risk surveys: every two years, the company conducts a psychosocial risk survey and, based on the results obtained, an an action plan if necessary.
- Environmental leaflet and documents on good environmental practices with regard to waste management: this is an informative document to help workers sort waste correctly. If they have any doubts or questions, they can consult the environmental manager. It is provided to workers during the induction training given to them on their first day at work. on their first day of work.

 Form for improvement opportunities and non-conformities: this is managed through the continuous improvement procedure. Employees can complete the corresponding form and place it in the post box or hand it in.
 by hand to the person responsible for the process.

Environmental statement 2024

- HSQE Bulletin: published both by email and on the plant notice boards. Among
 other issues, it provides
 information for workers on aspects related to environmental objectives, consumption
 and waste generated.
- Integrated Environmental Authorisation. Befesa has an Integrated Environmental Authorisation published in the Official Gazette of Castile and León (BOCyL).

9.-Other relevant activities in the field of the environment.

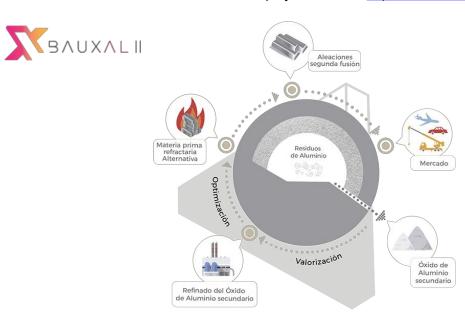
In accordance with ISO 14001:2015 and the European EMAS Regulation, Befesa Aluminio CT Valladolid has undergone the corresponding internal and external environmental audits to verify the correct functioning of the environmental management system implemented.

Audits are a key element in verifying the correct performance of each of the management system processes. When non-conformities are detected during the audits, corrective actions are established to eliminate these non-conformities.

The internal and external audit programme has been satisfactorily completed throughout the year covered by this statement.

- Befesa Aluminio CT Valladolid has a greenhouse gas inventory that has been externally verified in accordance with UNE-EN ISO 14064-1:2019. Greenhouse gases, for the quantification and reporting of greenhouse gas emissions and removals. (ISO 14064-1:2018). Since November 2016, the company has been certified according to the ISO 50.001 standard on energy efficiency.
- Befesa belongs to and actively participates in the following associations:
 - Spanish Confederation of Metal Industry Organisations CONFEMETAL, an active member of the environmental committee.
 - Spanish Association of Special Waste Managers (ASEGRE): Brings together companies in Spain whose activity is the management of hazardous waste.
 - Valladolid Metal Business Association (VAMETAL)
 - European Aluminium: association of the main aluminium producers and recyclers in Europe.

Befesa Aluminio S.L regularly participates in regional, national and European R&D&I
programmes in collaboration with various research centres, universities and other
prestigious entities aimed at promoting and improving the recycling, recovery and complete
utilisation of waste from the aluminium industry.


Among the various projects under development, the following strategic projects stand out:

 Life Bauxal II Project Focused on the search for an alternative raw material to bauxite minerals, considered critical for the European Union.

This project addresses the transformation of secondary aluminium oxide into an alternative raw material to bauxite in the manufacture of refractories.

It constitutes a new value-added product on the market that reduces dependence on imported primary extraction materials.

Further information is available on the project website: http://www.bauxal2.com/

The BAUXAL-II Project (LIFE17ENV/ES/00160) is co-funded by the EU LIFE Programme

The HylnHeat project is moving towards the decarbonisation of melting processes for producing secondary aluminium alloys by integrating hydrogen as an alternative fuel to fossil fuels.

The reduction of carbon dioxide emissions in the secondary aluminium industry will be achieved through the implementation of efficient hydrogen combustion systems covering almost the entire process chain.

Further information is available on the project website: https://hyinheat.eu/

This project has received funding from the European Union's Horizon Europe research and innovation program under Grant Agreement No 101091456

The Hydrogas project aims to purify, separate and utilise hydrogen and methane from the gas stream obtained in the process of recycling and recovering salt slag. Through selfconsumption, we will reduce our dependence on natural gas in steam boilers used in this same process.

This project completes the aluminium waste recycling cycle, making full use of the resources from the waste itself, thereby achieving an energy self-sufficient industry.

This project LIFE23-CCM-ES-LIFE-HYDROGAS has been funded by the the European Union LIFE 23 program under grant agreement number 101157282

10.- Next environmental statement.

This environmental statement is intended to inform partners, authorities, customers, suppliers, the media and neighbours about our management policy and to propose a constructive dialogue.

The next environmental statement will be made in June 2026.

The environmental verifier that validates this declaration is Bureau Veritas Certification, a certification body accredited by ENAC with the number ES-V-0003, located at Calle Valportillo Primera, 22-24; Edificio Caoba- Polígono Industrial La Granja 28108 Alcobendas, Madrid.

This declaration is valid for one year from the date of validation.

Digitally signed document. BUREAU VERITAS IBERIA, S.L. EMAS verifier no.: ES-V-0003 Environmental statement validated in accordance with Regulation (EC) 1221/2009, as amended by Regulations (EU) 2017/1505 and (EU) 2018/2026 2025.09.10 14:12:42 +02'00'